Questions? Want to schedule a free onsite demo? Call Us: +1-203-730-4600 Or Request Free Onsite Demo  

Lathes

Lathes - The NORMIN Method - The Relationship of the Three "Centers" The critical alignment of a lathe or other turning-type machine is the axis of rotation of the spindle to the tailstock, sub-spindle, turret or tool holder. Conventional methods are very cumbersome and time consuming and are practically useless on large lathes. The L-700 Spindle Alignment System vastly simplifies the task by putting the laser right into the spindle chuck. The laser is aligned to the spindle axis of rotation and is projected out to 100 feet (30.5 M). This becomes the reference from which the ways, tool holders and tailstocks can be measured and aligned.

Laser Setup

The setup and use of an L-700 is relatively easy and begins by "qualifying" the laser beam or making it parallel and colinear to the axis of rotation of the spindle. The laser is inserted into the spindle and a 4-axis target is placed in the tailstock, sub-spindle, tool holder or in a fixture. The target is connected to a computer and the NORMIN procedure is followed to center the laser beam on the axis of rotation.

Headstock/Tailstock & Bed Way Alignment

Once the laser is qualified, the resultant readings (set points) are the actual angular and center misalignment measurements of the headstock to the tailstock, or the spindle to the sub-spindle. At this point, the headstock, tailstock or sub-spindle can be aligned using the software as a 4-axis live indicator.

Headstock/Tailstock & Bed Way Alignment Once the headstock/tailstock or spindle/sub-spindle misalignment has been corrected, the bed-straightness data can be taken. The target is traversed along the ways in either the tailstock or tool holder, depending on preference and fixturing. Readings for horizontal and vertical straightness (and pitch and yaw if needed) are taken by using our 4-axis target, the T-261A.

Cross-Slide Squareness

Squareness of the cross slide can be easily checked by setting up a remote optical square (P-405). The optical square is put on a target stand and adjusted, using a 4-axis target, until it is exactly perpendicular to the input beam from the laser in the spindle. The optical square has an automatically rotating head that sweeps a laser plane that is perpendicular to the input beam. A single-axis target is placed on the cross slide and zeroed in the closest position to the spindle centerline. It is then traversed along its axis, and any deviation from zero is a squareness error. The straightness of the cross slide travel is also checked at the same time.

How the Lathe Alignment System Works

The setup and use of an L-700 is quite easy and begins by following Lathe9's on-screen instructions to enter the dimensions, number of points, and tolerances. Next the laser is "qualified" or made co-linear (parallel and coincident), to the axis of rotation (AOR) of the spindle. Then Lathe9 measures the lathe bed for parallelism to the spindle's AOR. If out of tolerance, Lathe9 offers a live alignment screen to align the headstock to the lathe bed.

Once the spindle is aligned to the lathe bed, Lathe9 measures the headstock spindle alignment to the tailstock or subspindle following an easy 3 step process. If out of tolerance, Lathe9 offers a live 4-axis alignment screen to align the spindles horizontal and vertical centers (offsets) and horizontal and vertical angles. After aligning the tailstock, Lathe9 offers a printed report showing the lathe bed straightness, spindle parallelism to the bed and the headstock-tailstock alignment.

L-700 Spindle Alignemt System Basic Setup on a Lathe or Turning Center

Lathe Spindle Alignment Procedure Using Lathe9 Software

Lathe Spindle Alignment Step1 - Setup

Datasheet

 

Step 1 - Setup

Enter the number of points to measure on the bed, the distance between points, the headstock and tailstock dimensions, and the alignment tolerances. Also select which side of the machine the laser is mounted in.

 

Step 2 - Qualify Laser - Spindle Inverted

Lathe Spindle Alignment Step2 - Qualify Laser

  1. A) Insert laser into headstock spindle, the T-261A into the tailstock or subspindle, and rotate the main spindle so the L-700 is in the inverted position.
  2. Click Record.

Lathe Spindle Alignment Step2 - Qualify Laser

Step 2 - Qualify Laser - Spindle Normal

Lathe Spindle Alignment Step2 - Qualify Laser - Spindle Normal

  1. Rotate the spindle/laser to the NORMal position.
  2. Click Record. Offsets are immediately applied to displays so the laser can be adjusted to the spindle's AOR.

Lathe Spindle Alignment Step2 - Qualify Laser - Spindle Normal

Step 2 - Qualify Laser Showing the Laser Bucked-in to the Spindle AOR

Lathe Spindle Alignment Step2 - Qualify Laser - Spindle Normal

  1. Using Allen key, turn the angular adjustments until the V & H Angular displays are zero.
  2. Using the Allen key, turn the center adjustments until the V & H Center displays are zero. The laser beam is not concentric to the Spindle AOR.

Lathe Spindle Alignment Step2 - Qualify Laser - Spindle Normal

Step 3 - Spindle AOR Parallelism to Lathe Bed

  1. Put T-261A Target on lathe saddle and move it to a distance from the headstock specified in for Point #1 in Step 1.
  2. Click Record to record the first data point.
  3. Move saddle/T-261A to next point and click Record. Continue until all the points are recorded.

 

Step 3 - Spindle AOR Parallelism to Lathe Bed Results

Click Results to display the Lathe Bed Parallelism Results table, which shows: a) lathe bed straightness, b) parallelism of the Spindle AOR to the lathe bed. If the Headstock Parallelism results are out of tolerance, click Close and then click Move to open the live Headstock Alignment screen.

Note: If the saddle and tailstock are on separate machine rails, the data can be taken a second time by moving the T-261A to the tailstock and taking a second set of lathe bed straightness data.

 

Step 3 – – Live Spindle-to-Bed Alignment Screen

Click Move in Step 3 to open the Spindle -to-Bed alignment screen, showing a live display of the vertical and horizontal parallelism (angular) values relative to the lathe's machine ways or bed. The data can be shown relative to the tailstock bed, saddle bed or an average of both.

Lathe9 automatically calculates the shim values to align the headstock spindle to the tailstock or saddle beds and on -screen graphics and display values update continuously as the shim is added. The shims are color-coded and when they turn green, the alignment is complete. Click Close to return to Step 3 to retake the data and confirm the alignment.

 

Step 4 – Lathe Bed Straightness Results

To view the Lathe-Bed Straightness results, click Next and Lathe9 displays a graph of the Vertical and Horizontal straightness results for the lathe's bed. A summary shows:

  • The overall Vertical and Horizontal Straightness TIR for the tailstock rails and for the saddle rails (if the saddle has separate rails) and if the data is in or out of tolerance.
  • Parallelism of the headstock spindle to the tailstock bed (rails) and if in or out of tolerance.
  • Parallelism of the headstock spindle to the saddle (if separate from tailstock bed) rails and if in or out of tolerance.

The straightness data can be plotted for the tailstock rails, saddle rails or both. The plot can use the Best-Fit line as the reference or the laser beam. The graph also shows tolerance bands, the Best -Fit line, or pitch and yaw data for each point.

 

Step 5: Record Data-Spindle: Laser Inverted/Target Normal

When the headstock is aligned to the bed, the tailstock (subspindle or turret) can then aligned to the headstock. First, insert the T-261A into the tailstock or subspindle in the NORMal position and ensure the bubble is centered in the vial. Rotate the headstock spindle so the L-700 is in the Inverted position, making sure it is level. Click Record.

 

Step 5 – Record Data-Spindle: Laser Normal/Target Inverted

Rotate the headstock spindle so the L-700 is in the NORMal position. Rotate the target in the tailstock chuck to the INverted position. Ensure both are level. Click Record.

 

Step 5 – Record Data Spindle: Laser Normal/Target Normal

Rotate the target in the tailstock chuck to the NORMal position. Click Record.

 

Step 5 - Record Data Spindle: Results

After taking the data, Lathe9 calculates mounting-error offsets and applies them to the display values. It also calculates the spindle alignment results and applies the tolerance. On-screen graphics illustrate the vertical axes of the alignment (Side View) and the horizontal axes of the alignment (Top View). If it is out of tolerance, click Next and go to Step 6 -- Tailstock/Turret Alignment Live Move Screen.

 

Step 6 – Tailstock/Turret Alignment Live Move Screen

After taking the spindle alignment data in Step 5, click Next to go to the Tailstock/Turret Live Move Screen. In this screen, the mounting errors collected from Step 5 are applied as an offset to the data displays, showing the actual alignment in four axes: Side View, showing the Vertical Center and Vertical Angle and Top View, showing the Horizontal Center and Horizontal Angle.

The data is live and on-screen graphics illustrate either the tailstock or turret spindle alignment relative to the headstock's spindle axis (AOR). Shim and Move values are also calculated to fix the alignment. The displays turn red when the alignment is out of the tolerance selected in Step 1 or green if in tolerance.

Add the shim and spacers or make the horizontal move, watching the display update as you make each move. When the displays turn green, it's aligned!

It is always a good idea to go back to Step 5 and retake the data to confirm the alignment. After confirming the alignment, click Print Report for a report of the entire alignment.

 

Cross Slide Squareness

Squareness of the cross slide can be easily checked by setting up a remote optical square (P-405). The optical square is put on a target stand and adjusted, using a 4-axis target, until it is exactly perpendicular to the input beam from the laser in the spindle. The optical square has an automatically rotating head that sweeps a laser plane that is perpendicular to the input beam. A single-axis target is placed on the cross slide and zeroed in the closest position to the spindle centerline. It is then traversed along its axis, and any deviation from zero is a squareness error. The straightness of the cross slide travel is also checked at the same time.

 

Alignment System Features
  • Simple fixturing for mounting the laser and target
  • L-700 mounts in the spindle to project its axis of rotation out to 100' (30.5 M)
  • Visible-light beam aids setup
  • Compact and rugged (4" L x 2.9" H x 1.75" W)
  • Center resolution of 0.00002" (.0005 mm) and angular resolution of .00002"/ft (.002 mm/M)
  • Vertical and horizontal controls for both angle and center adjustment of the laser to the spindle's precise axis of rotation
  • Needs only 10" (250 mm) of space between spindle and tailstock or subspindle.
  • Laser runs for up to 8 hours on a standard, replaceable 9-volt battery
  • Windows-based software with large color graphics that corrects mounting errors and calculates shim values

© 2012 Hamar Laser. Products Covered Under US & Foreign Patents.